

Published on Web 07/06/2006

Palladium-Catalyzed Hydrogenation: Detection of Palladium Hydrides. A Joint Study Using Para-Hydrogen-Enhanced NMR Spectroscopy and Density Functional Theory

Joaquín López-Serrano,[†] Simon B. Duckett,^{*,†} and Agustí Lledós[‡]

Department of Chemistry, University of York, Heslington, YO10 5DD York, United Kingdom, and Department de Química, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain Received May 1, 2006; E-mail: sbd3@york.ac.uk

Palladium complexes containing two monodentate phosphine ligands are widely used in homogeneous catalysis.¹ Their conversion during catalysis to palladium monophosphine complexes² or palladium colloids³ means that identifying the active catalyst is not straightforward. In the case of hydrogenation, a role for a palladium hydride is often proposed.⁴ An example of such a species is given by Pd(bcope)(CHPhCH₂Ph)(H),⁵ which was seen through the parahydrogen-induced polarization (PHIP)6 effect. In this Communication, we report on the catalytic activity of *cis*-[Pd(PEt₃)₂(OTf)₂].⁷ Although many palladium-based reactions have been studied by PHIP,^{6,8} we show here for the first time that palladium hydride resonances can themselves be enhanced and, in conjunction with density functional theory (DFT), rationalize the hydrogenation activity of a palladium-bisphosphine based hydrogenation catalyst. Earlier ab initio studies on Pd(PH₃)(H)(C₂H₅) have considered the role of monophoshine species in alkene hydrogenation.9

A number of 9 μ M solutions of *cis*-[Pd(PEt₃)₂(OTf)₂] (1) in Me-OD- d_4 containing a 25-fold excess of diphenylacetylene- d_{10} under 2-4 atm of 100% p-H₂ have been examined by 700 MHz NMR spectroscopy. This reaction would be expected to provide a route to the analogous Pd(0) species Pd(PEt₃)₂.¹⁰ The resulting ¹H NMR spectra at 295 K revealed three new signals at δ 7.25, 6.66, and 2.91, due to the three expected organic hydrogenation products, *trans*-stilbene, *cis*-stilbene, and 1,2 diphenylethane, respectively. The δ 6.66 signal is due to the kinetic cis-hydrogenation product and appears in emission due to its formation via an intermediate with inequivalent hydride ligands.¹¹ While the two other signals appear in absorption, they also show PHIP when ¹³C=C-enriched diphenylacetylene- d_{10} is employed and therefore correspond to products formed via a hydrogenation pathway that places two protons from the same $p-H_2$ molecule on adjacent sites. When this reaction is examined by GCMS, the ratio of cis-stilbene: trans-stilbene: 1,2 diphenylethane was typically 78:11:11.

In these spectra, a number of metal-based species are also detected through the PHIP effect. Notably, three enhanced ¹H NMR signals appear immediately at δ 4.47, 3.22, and 2.99 (Figure 1a). These three coupled signals, arising from species **2** (Chart 1), also couple to two ³¹P nuclei which resonate at δ 8.40 ($J_{PP} = 54$ Hz) and 25.90 ($J_{PP} = 54$ Hz). Use of ¹³C=C-enriched diphenylacetylene- d_{10} (310 K) revealed that the ¹H resonance of **2** at δ 4.47 connected to a ¹³C signal at δ 67.14 ($J_{HC} = 157$ Hz, $J_{CP} = 44$ Hz), while both the δ 3.22 and 2.99 signals connected to a single δ 35.30 resonance ($J_{HC} = 130$ Hz, $J_{CP} = 15$ Hz). These data confirm that **2** is Pd(PEt_3)₂(CHPhCH₂-Ph)(H). When an EXSY spectrum was recorded at 308 K, magnetization transfer from the δ 4.47 signal of **2** to the δ 7.25 signal of *trans*-stilbene confirmed a role for **2** in the hydrogenation of diphenylacetylene.

The most remarkable feature of these ¹H NMR spectra was, however, the observation of a PHIP-enhanced hydride signal at δ

Figure 1. ¹H NMR spectra for the reaction of **1** with diphenylacetylene d_{10} and p-H₂ in MeOD- d_4 : (a) 32 scans (295 K) showing key alkyl proton resonances; (b) 1224 scans (312 K) showing hydride resonances of **3**, **4a**, and **4b**, with the DFT model for **3** (**3**') inset.

Chart 1. Structures of 2, 3, 4a, and 4b

-9.18 due to **3** (Chart 1). This hydride resonance appears as a doublet of doublets of doublets of antiphase doublets due to couplings to three inequivalent phosphine ligands (J_{PH} couplings 19, 71, and 89 Hz) and a single proton ($J_{HH} = -3.50$ Hz) (Figure 1b); the proton providing this coupling was located by COSY spectroscopy at δ 3.34 and coupled, in turn, to two signals at δ 3.52 and 3.38. The corresponding ¹H-³¹P HMQC spectrum revealed three ³¹P signals for **3** at δ 3.41 (d, $J_{PP} = 75$ Hz), 4.63 (d, $J_{PP} = 75$ Hz), and 7.64. A ¹H-⁻¹³C HMQC measurement yielded two ¹³C signals for **3**, one due to CH₂ a moiety at δ 49.70 ($J_{HC} = 124$ Hz) and the other due to a CH moiety at δ 49.58 (dd, $J_{HC} = 124$ and 134 Hz, $J_{PC} = 24$ and 55 Hz). When the hydride resonance of **3** was monitored by EXSY spectroscopy, magnetization transfer into both *cis*-stilbene and 1,2-diphenylethane was seen at 313 K.

Species 3 therefore contains three phosphines, one alkyl ligand, and one hydride ligand. DFT calculations, however, reveal that the monomeric trisphosphine complex $Pd(PH_3)_3(H)(CH_2CH_3)$ is unsta-

[†] University of York. [‡] Universitat Autònoma de Barcelona.

Scheme 1. DFT-Based Reaction Scheme (with Energies) for Hydrogenation by a Palladium-Bisphosphine Complex^a

^{*a*} All energies are in kJ/mol and relative to $Pd(PH_3)_2 + H-C \equiv C-H + 2H_2$; labels 2' and 4a' indicate where experimentally observed complexes map onto the DFT model system.

ble with respect to phosphine dissociation and the formation of the corresponding PH₃ analogue of **2**, **2'**. The NMR characteristics of the hydride signal of **3**, and in particular the observation of three distinct phosphine resonances without a characteristically large trans PP coupling, support this suggestion and indicate that **3** is most likely a dipalladium species. This is consistent with the fact that the size of the PHIP-enhanced signal for **3** depends critically on the concentration of **1**. DFT calculations on potential dipalladium species reveal that Pd₂-(PH₃)₃(H)(CH₂CH₃)²⁺ (**3'**) is stabilized by 489 kJ mol⁻¹ relative to Pd(PH₃)₂²⁺ and Pd(PH₃)(H)(CH₂CH₃). Hence, under the reaction conditions where Pd(PEt₃)₂²⁺ is present, the formation of **3** is expected.

Remarkably, in the high metal concentration experiments at 312 K, two further PHIP-enhanced hydride signals (ratio 1:0.7) are detected in the early stages of the reaction, where there are high levels of substrate and H₂, at δ -7.77 (antiphase ddd with $J_{\rm PH}$ = 82 and 18 Hz) (**4a**) and -10.65 (antiphase dt triplets with $J_{\rm PH}$ = 15.8 Hz) (**4b**).¹² Species **4a** yielded two distinct ³¹P resonances at δ 11.92 and 10.72, while **4b** produced a single signal at δ 19.29. Additional COSY spectra located a proton at δ 6.35, which accounted for the antiphase $J_{\rm HH}$ splitting of -4 Hz in **4a**, and a further signal at δ 5.35 ($J_{\rm HH}$ = -4 Hz) in **4b**. While the weak and transient nature of the NMR signals seen for these species prevented the collection of ¹³C data, they can be unambiguously be assigned to cis and trans isomers of Pd(PEt_3)₂(H)(CPh=CPhH), respectively.

The role of these species in the hydrogenation chemistry of **1** is illustrated in Scheme 1 and has been rationalized through this and other theoretical studies, which reveal that Pd(PH₃)₂ adds H₂ in a high-energy process while coordination of the alkyne is exothermic.¹³ The catalytic cycle features palladium-monophosphine species, with Pd(PH₃)(H)₂(H-C=C-H) reacting via hydride transfer to form the three-coordinate vinyl hydride Pd(PH₃)(H)(CH= CH₂), which is analogous to Pd(PH₃)(H)(CH₂CH₃).⁹ This T-shaped species coordinates phosphine to form cis and trans isomers of Pd-(PH₃)₂(H)(CH=CH₂) (**4a**', **4b**'), which differ in energy by 20.6 kJ mol⁻¹. Experimentally, the observation of NMR signals for **4a** and **4b** in the ratio 1:0.7 suggests that their formation proceeds under kinetic control. In view of the fact that the [**4b**] remains low, C-H bond formation via phosphine dissociation must be rapid.

The DFT studies predict that $Pd(PH_3)(H)(CH=CH_2)$ isomerizes to $Pd(PH_3)(CH_2=CH_2)$ prior to addition of H_2 . The corresponding H_2 addition product then forms the alkyl hydride $Pd(PH_3)(H)(CH_2CH_3)$ after hydride migration. This alkyl species forms $Pd(PH_3)_2(H)(CH_2-CH_3)$ CH_3) upon PH_3 coordination, a species that is directly analogous to **2**. The detection of **3**, **4a**, and **4b** is therefore fully consistent with the DFT studies.

An additional hydride resonance appears in these NMR spectra as an emission signal at δ –18.69 which does not contain any ³¹P splittings. The formation of a cluster containing two equivalent hydrides that are not phosphorus-coupled is therefore indicated. This confirms that phosphine loss occurs. We further note that the addition of free PEt₃ slows down both hydrogenation and cluster formation; activity is totally suppressed by 5 equiv.

The key deductions outlined in this paper are summarized in Scheme 1 and correspond to the mapping of the hydrogenation of an alkyne by a palladium-bisphosphine complex.

Acknowledgment. We are grateful to EU for funding (HYDRO-CHEM HPRN-CT-2002-00176) and to K. Q. Almeida Leñero and J. Dunne for discussions. This paper is dedicated to Dr. José Antonio Abad Baños on his retirement.

Supporting Information Available: Synthetic and computational details and key NMR observations. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Negishi, E.-I. Handbook of Organopalladium Chemistry for Organic Synthesis; Wiley: New York, 2002.
- (2) (a) Stambuli, J. P.; Incarvito, C. D.; Buhl, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 1184–1194. (b) Ahlquist, M.; Fristrup, P.; Tanner, D.; Norrby, P.-O. Organometallics 2006, 25, 2066–2073.
- (3) Moiseev, I. I.; Vargaftik, M. N. New J. Chem. 1998, 22, 1217–1227.
- (4) Grushin, V. V. Chem. Rev. 1996, 96, 2011-2034.
- (5) Dunne, J. P.; Aiken, S.; Duckett, S. B.; Konya, D.; Almedia Lenero, K. Q.; Drent, E. *J. Am. Chem. Soc.* **2004**, *126*, 16708–16709.
 (6) (a) Bowers, C. R.; Jones, D. H.; Kurur, N. D.; Labinger, J. A.; Pravica, M. G.;
- (6) (a) Bowers, C. K.; Jones, D. H.; Kurur, N. D.; Labinger, J. A.; Pravica, M. G.; Weitekamp, D. P. Adv. Magn. Reson. **1990**, *14*, 269. (b) Natterer, J.; Bargon, J. Prog. Nucl. Magn. Reson. Spectrosc. **1997**, *31*, 293–315. (c) Blazina, D.; Duckett, S. B.; Dunne, J. P.; Godard, C. Dalton **2004**, 2601–2609.
- (7) cis-[Pd(PEt₃)₂(OTf)₂] was synthesized from cis-[Pd(PEt₃)₂(Cl)₂] according to literature procedures. Stang, P. J.; Cao, D. H.; Saito, S.; Arif, A. M. J. Am. Chem. Soc. **1995**, 117, 6273–6283.
- (8) (a) van Laren, M. W.; Duin, M. A.; Klerk, C.; Naglia, M.; Rogolino, D.; Pelagatti, P.; Bacchi, A.; Pelizzi, C.; Elsevier, C. J. Organometallics 2002, 21, 1546–1553. (b) Dedieu, A.; Humbel, S.; Elsevier, C. J.; Grauffel, C. Theor. Chem. Acc. 2004, 112, 305–312. (c) Kluwer, A. M.; Koblenz, T. S.; Jonischkeit, T.; Woelk, K.; Elsevier, C. J. J. Am. Chem. Soc. 2005, 127, 15470–15480.
 (9) Koga, N.; Obara, S.; Kitaura, K.; Morokuma, K. J. Am. Chem. Soc. 1985, 107,
- (9) Koga, N.; Obara, S.; Kitaura, K.; Morokuma, K. J. Am. Chem. Soc. 1985, 107, 7109-7116.
 (10) Budzelaar, P. H. M.; Leeuwen, P. W. N. M.; Roobeek, C. F. Organometallics
- (10) Budzelaar, P. H. M.; Leeuwen, P. W. N. M.; Roobeek, C. F. Organometallics 1992, 11, 23–25.
- (11) Aime, S.; Gobetto R.; Canet, D. J. Am. Chem. Soc. 1998, 120, 6770–6773.
 (12) (a) Abis, L.; Santi, R. J. Orgomet. Chem 1981, 215, 263–267. (b) Portnoy,
- M.; Milstein, D. Organometallics 1994, 13, 600-609. (13) Low, J. J.; Goddard, W. A. J. Am. Chem. Soc. 1986, 108, 6115-6128.

JA0630137